Science Advances virtual reality paper


Working with academic colleagues from high-performance computing (HPC) and human-computer interaction (HCI), we recently published an open access paper entitled “Sampling molecular conformations and dynamics in a multiuser virtual reality framework” in the AAAS journal Science Advances. The paper described a scientifically rigorous, VR-enabled, multi-person, real-time interactive Molecular Dynamics (iMD) framework, , which lets researchers use virtual reality to literally reach out & touch real-time molecular physics using cloud-mounted supercomputing.

The paper presents the results of HCI experiments showing that VR (specifically the HTC Vive setup) enables users to carry out 3d molecular simulation tasks extremely efficiently compared to other platforms. Specifically, we asked users to perform three separate molecular manipulations, and timed how long each took on various platforms: in VR, on a touchscreen, and using a computer/mouse . The tasks included threading a molecule of methane through a simulated carbon nanotube; unwinding a left-handed helical molecule and rewinding it into a right-handed helix; and tying a knot in a simulated protein. The results showed that in VR, users were able to accomplish all of the tasks more quickly. The knot task, in particular, was completed nearly ten times as rapidly! By using 2D screen-based simulations of molecules, it seems pretty clear that we’re a lot less efficient than we could be.


interactive MD art installation

DS FESTIVAL -133-compressedIn collaboration with Bristol-based tech startup Interactive Scientific, more than 37,000 people had the chance to experience the acclaimed real-time interactive molecular dynamics art installation ‘danceroom Spectroscopy’ (dS) at the ‘We the Curious’ science museum in central Bristol. dS – whose architecture is described in a 2014 Faraday Discussion paper – fuses rigorous methods from computational physics, GPU computing, and computer vision to interpret people as fields whose movement creates ripples and waves in an unseen field. The result is a gentle piece comprised of interactive graphics and soundscapes, both of which respond in real-time to people’s movements – enabling them to sculpt the invisible fields in which they are embedded. Offering a unique and subtle glimpse into the beauty of our everyday movements, dS allows us to imagine how we interact with the hidden energy matrix and atomic world which forms the fabric of nature, but is too small for our eyes to see. It’s as much a next-generation digital arts installation as it is an invitation to contemplate the interconnected dynamism of the natural world and processes of emergence, fluctuation, and dissipation – from the microscopic to the cosmic. The installation ran from October 2017 through January 2018, and was open to anybody;  you can read more about it here.

OpenWorld San Francisco

During the first week of October, I attended the Oracle Open World conference in San Francisco, where I was invited to give a talk entitled “Collaborative Cloud-Based Virtual Reality for Scientific Research & Education”. In the talk, I outlined the virtual reality framework that we’ve been working to develop over the years, focusing on the cloud aspects of the project – particularly those which enable multiple users to simultaneously inhabit the same real-time virtual simulation environment.  Using modern cloud architectures, it’s now possible to build real-time interactive simulations that harness the power of cloud supercomputing. And the cloud allows anybody to login to the simulation server remotely. Another highlight of the trip was an invitation to a small get-together at Larry Ellison’s private SF residence, where he offered his insight into a wide range of different areas, all informed by his perspective as the founder of one of the planet’s biggest tech companies.  Amongst his most memorable statements was his claim that, were he to start over again, he’d consider starting a molecular science or biotech company. He also said that computational molecular biosciences is one of his hobbies. It’s an area he’s always been interested in, but wasn’t really a viable discipline back in the day. Things have definitely changed.

modern art oxford: future knowledge

On 17th June, Lisa May Thomas and I led a workshop at Modern Art Oxford entitled “Sculpting the Invisible World”. The work was part of the gallery’s ‘Future Knowledge’ program of events, curated by Emma Ridgway, and photographed by Stu Allsop. Using a pioneering multi-person virtual reality software framework, visitors were invited to interact within a virtual landscape as embodied energy fields. Methods from rigorous computational molecular physics and real-time digital rendering allowed digitally embodied participants to sculpt the dynamics of a simulated molecular nano-world, for example deforming buckminsterfullerene molecules, passing them back and forth, threading methane molecules through a carbon nanotube, and tying knots in proteins.

Sculpting the Invisible World follows on from the ‘dances with Avatars’ experiments carried out by Lisa May Thomas, which were designed as a sort of embodied Turing Test. During the Modern Art Oxford workshops, we were specifically interested in two aspects of multi-person interaction in VR: (1) what are the conventions which guided human-to-human interaction in virtual spaces, when we are rendered as digital bodies? (2) how do we begin to understand what ‘feeling’ means in an immersive scientific visualisation environment – particularly in order to understand workshop participants’ claims that different molecular structures “feel” different?